Cellules souches et médecine régénérative

Des avancées scientifiques majeures ont été obtenues ces dernières années dans le domaine des cellules souches. Elles ont été couronnées par le prix Nobel. Elles sont souvent présentées de façon exagérément optimiste par les médias alors que les perspectives médicales sont encore lointaines. Ce décalage est mis à profit par des entreprises qui exploitent la détresse des malades et de leurs familles en proposant des traitements miraculeux. Il sert aussi de prétexte pour dire que les recherches sur les cellules souches sont devenues inutiles et demander leur interdiction.

Le dossier fait le point sur l’état d’avancement des connaissances et des perspectives médicales en 2014. Il donne un aperçu de l’organisation de la recherche mondiale et des politiques nationales dans ce domaine.

Le dossier ne traite pas de bioéthique car les arguments des uns et des autres n’ont pas changé. Il est d’ailleurs peu probable qu’ils changent. En effet, ils présentent de fortes similitudes avec ceux sur l’assistance médicale à la procréation (AMP) et on constate dans le cas de l’AMP que le débat est bloqué depuis des décennies malgré l’évolution de la société (le premier « bébé éprouvée » est né en 1978 et actuellement 2,8 % des naissances en France résultent d’une AMP).

Cellules souches et médecine régénérative

Lexique

AMM : Autorisation de mise sur le marché

Cellules progénitrices : Elles dérivent des cellules souches multipotentes. Les cellules progénitrices donnent des cellules spécialisées, mais elles ont perdu la capacité de se diviser indéfiniment.

Cellules souches embryonnaires : Ce sont les cellules souches pluripotentes qu’on trouve dans l’embryon de cinq à sept jours.

Cellules souches multipotentes : Elles ne produisent qu’un nombre restreint de types cellulaires. Elles sont appelées aussi cellules souches adultes ou cellules souches somatiques.

Cellules souches pluripotentes induites (iPSC) : On sait transformer n’importe quelle cellule d’un adulte en cellule souche pluripotente. Les cellules produites sont appelées cellules souches pluripotentes induites (nom en abrégé : iPSC).

Cellules souches pluripotentes : Elles peuvent donner pratiquement tous les types cellulaires.

Cellules souches totipotentes : Elles sont l’équivalent d’un œuf. Transplantées dans l’utérus, elles donnent naissance à un être normal.

Clone, clonage : Un clone est un ensemble d’entités génétiquement identiques. Il peut s’agir de cellules ou d’êtres vivants complexes. Depuis la naissance de la brebis Dolly, on applique aussi le terme de clone à un animal obtenu au laboratoire par le transfert d’un noyau dans un ovule privé de son propre noyau. Le terme de clonage s’applique à différentes techniques visant à obtenir un clone.

FDA : *U.S. Food and Drug Administration* Agence américaine ayant entre autre pour mandat d’autoriser la commercialisation des médicaments sur le territoire des États-Unis.

HLA : Le système HLA est l’équivalent pour les greffes des groupes sanguins pour les transfusions. Il pose cependant plus de problèmes car il y a de très nombreux types HLA dans la population.
Table des matières

Lexique...2
Table des matières ..3
Les cellules souches ...5
Quelle est la différence entre cellule, tissu et organe ?..5
Toutes les cellules d’un individu contiennent-elles la même information génétique ?.....6
Quels sont les mécanismes qui déterminent le type cellulaire ?...............................6
Les cellules se renouvellent-elles chez un adulte ?..7
Toutes les cellules souches sont-elles équivalentes ?...8
Existe-t-il des similitudes entre cellules souches et cellules cancéreuses ?..............8
Où trouve-t-on des cellules souches multipotentes ?...8
Où trouve-t-on des cellules souches pluripotentes ?...9
La production de cellules souches...9
Peut-on produire des cellules souches totipotentes ?..9
Quelle est la principale source de cellules souches pluripotentes ?.......................10
D’où viennent les embryons utilisés pour la recherche en France ?.......................10
Quel est le droit sur l’utilisation d’embryons à des fins de recherche dans les autres pays ?........10
Où en est la controverse aux États-Unis pour l’utilisation d’embryons à des fins de recherche ?...11
Peut-on produire des cellules souches pluripotentes à partir de cellules adultes ?........12
La recherche sur les cellules souches pluripotentes..13
Comment en est-on arrivé aux cellules souches pluripotentes induites (iPSC) ?13
Pourquoi la découverte des cellules souches pluripotentes induites est-elle si importante ?........14
Pourquoi faut-il diversifier les sources de cellules souches pluripotentes ?..............14
Les cellules souches pluripotentes induites remplacent-elles les cellules embryonnaires ?....15
Où en est la recherche sur les cellules souches pluripotentes ?...............................16
Où se fait la recherche sur les cellules souches pluripotentes ?...............................17
L’utilisation des cellules souches en médecine...18
Thérapie cellulaire, médecine régénérative, de quoi parle-t-on ?...........................18
Quelles sont les thérapies cellulaires utilisées couramment ?................................18
Les thérapies cellulaires les plus courantes font-elles encore l’objet de recherches ?....19
Qu’attend-on des traitements à base de cellules souches mésenchymateuses ?.........20
Où se fait la recherche sur les cellules souches mésenchymateuses ?....................21
Quelles sont les thérapies à base de cellules souches pluripotentes ?.....................22
Les essais cliniques, entre rigueur scientifique et attentes du public........................23

Dossier pour l’IHEST
Cellules souches et médecine régénérative

Quelle est la législation sur les thérapies cellulaires ? .. 23
Qu’est-ce qu’un essai clinique ? .. 23
Pourquoi les essais cliniques sont-ils si lourds ? ... 23
Quels sont les arguments juridico-scientifiques sur les therapies cellulaires non autorisées ? 24
Une simplification des essais cliniques est-elle envisageable ? .. 25
Le traitement compassionnel correspond-il à un assouplissement des essais cliniques ? 26
L’industrie, les cellules souches et les therapies cellulaires.. 26
Quels sont les obstacles à une industrialisation rapide des thérapies cellulaires ? 26
Peut-on breveter des inventions sur les cellules souches pluripotentes humaines ? 27
Quel est l’encadrement réglementaire des banques de sang de cordon ombilical ? 27
Existe-t-il des banques de cellules mésenchymateuses ? ... 27
Pourquoi la thérapie cellulaire nécessite-t-elle des quantités industrielles de cellules ? 28
Qui finance la R&D sur la thérapie cellulaire ? .. 29
Le secteur privé investit-il dans la thérapie cellulaire ? .. 30
Références .. 31
Les cellules souches

Quelle est la différence entre cellule, tissu et organe ?

La cellule est l’unité élémentaire des êtres vivants. Sa taille est de quelques centièmes de millimètre. Elle se compose d’un noyau entouré d’un cytoplasmе. Le noyau rassemble la majorité de l’information génétique. La plupart des réactions biochimiques nécessaires à la vie se déroulent dans le cytoplasme. Un être humain est composé d’environ cent mille milliards de cellules.

Une cellule différenciée est une cellule capable de remplir une fonction précise (ex : les globules rouges transportent l’oxygène). Il existe environ deux cents types de cellules différenciées chez l’homme.

Un tissu est composé de cellules différenciées ayant une origine commune. Il remplit une fonction spécifique (ex : tissu musculaire). Il ne contient qu’un petit nombre de types de cellules.

Un organe est une partie du corps nettement délimitée qui exerce une fonction déterminée. Il est constitué de différents tissus.

Figure 1. Organisation spatiale des différents tissus constituant un os ([3] p. 33). Hematopoietic stem cell : cellule souche hématopoïétique. A droite, la cellule souche hématopoïétique est nichée contre une cellule mésenchymateuse (Hematopoietic supportive stroma).

Les tissus et les organes ne sont pas des amas de cellules en vrac. Une organisation spatiale correcte est indispensable à leur fonctionnement. On parle de niche pour l’environnement immédiat d’une cellule (ex : la cellule souche hématopoïétique est nichée contre une cellule mésenchymateuse en bas à droite de la Figure 1) et de matrice (scaffold) pour un organe.

([3] Executive summary 2, p. 33, [5], [64] p. 44, p. 49, [108])
Cellules souches et médecine régénérative

Toutes les cellules d’un individu contiennent-elles la même information génétique ?

Toutes les cellules d’un individu sont issues d’une unique cellule (l’œuf, produit de la fécondation de l’ovule par le spermatozoïde) et ont la même information génétique qu’elle (le même génome).

La preuve est qu’on obtient un animal parfaitement normal en remplaçant le noyau d’un œuf par le noyau d’une cellule prise chez un adulte. Cette opération est appelée clonage, elle a été réussie la première fois au début des années 1960. Un exemple célèbre de clonage est la brebis Dolly en 1997.

![Figure 2. Le premier clonage réussi chez un animal : le remplacement du noyau d’un œuf par un noyau d’une cellule de l’intestin chez le Xenope ([38] p. 230).](image)

Cependant, une partie seulement de l’information génétique est utilisée par chaque cellule à un moment donné. La fraction de l’information exprimée dépend du type cellulaire et de paramètres variés (ex : position de la cellule dans le corps).

Le clonage est utilisé principalement pour produire des animaux de laboratoire ayant un patrimoine génétique particulier. Il peut aussi être utilisé pour reproduire à l’identique des animaux d’élevage ayant des caractéristiques particulièrement intéressantes. La mise sur le marché d’aliments dérivant d’animaux clonés n’est pas autorisée actuellement.

([38], [55], [111])

Quels sont les mécanismes qui déterminent le type cellulaire ?

Le type cellulaire est déterminé par étapes successives :

1. L’œuf donne un amas de cellules équivalentes, les cellules souches embryonnaires (la masse bleue dans le blastocyste Figure 3) ;
2. Les cellules souches s’organisent en trois couches dont le devenir sera différent, plus un petit paquet qui donnera les cellules germinales (les quatre flèches partant de la gastrula Figure 3) ;
3. Les tissus résultent d’une spécialisation ultérieure au sein de chaque couche (la bande du bas Figure 3).

Toutes ces étapes sont sous le contrôle de quelques centaines de gènes qui régulent l’expression d’une grande partie du génome.

Il est souvent possible d’augmenter le degré de spécialisation des cellules, c’est-à-dire de suivre les flèches dans la Figure 3. Il est en revanche difficile de dédifférencier les cellules, c’est-à-dire de remonter les flèches. C’est au point que le prix Nobel a été décerné aux chercheurs qui ont découvert le moyen de remonter jusqu’aux cellules souches embryonnaires.
Les cellules se renouvelent-elles chez un adulte ?

La majorité des cent mille milliards de cellules d’un adulte ne se divise plus. Cependant, à chaque seconde, plus de vingt millions de cellules de notre organisme se divisent pour maintenir constant le nombre de cellules (remplacement des cellules disparaissant par vieillissement ou par lésion). Les cellules qui se divisent sont appelées cellules souches.

Une cellule souche reste capable de se diviser tout au long de la vie et de donner naissance à tous les types cellulaires composant un tissu. La division d’une cellule souche produit une nouvelle cellule souche (cellule de « réserve ») et une cellule s’engageant dans un processus de différenciation qui la conduira à remplir une fonction précise. Cette dernière est appelée cellule progénitrice. Les cellules progénitrices se divisent pour donner des cellules spécialisées, mais elles ont perdu la capacité de se diviser indéfiniment (Figure 4).
Cellules souches et médecine régénérative

Figure 4. Différenciation des cellules sanguines ([3] p. 33). *Hematopoietic stem cell* : cellule souche hématoïétique.

Tous les êtres vivants pluricellulaires possèdent des cellules souches. Par exemple, ce sont elles qui permettent la régénération des membres chez les lézards.

([3] Executive summary 2-3, p. 33, [43], [60] p. 86)

Toutes les cellules souches sont-elles équivalentes ?

Non. On distingue quatre catégories de cellules souches en fonction de la diversité des types cellulaires auxquels elles peuvent donner naissance :

- *Les cellules souches unipotentes* ne produisent qu’une seule sorte de cellules différenciées (exemple : cellules souches utilisées pour les greffes de peau).

- *Les cellules souches multipotentes* ne produisent qu’un nombre restreint de types cellulaires. Elles sont appelées aussi cellules souches adultes ou cellules souches somatiques. La cellule souche hématoïétique de la Figure 4 est une cellule souche multipotente, elle produit les globules rouges, les différentes sortes de globules blancs et les plaquettes.

- *Les cellules souches pluripotentes* peuvent donner pratiquement tous les types cellulaires. Ces cellules sont aussi appelées cellules souches embryonnaires car on les trouve principalement dans des embryons de cinq à sept jours. La Figure 3 montre la diversité des tissus produits par les cellules pluripotentes.

- *Les cellules souches totipotentes* peuvent donner naissance à un individu complet. Elles sont, comme l’œuf, capables de produire tous les tissus d’un individu adulte ainsi que le placenta. Il s’agit de l’œuf fécondé et de chacune des huit premières cellules qui en dérivent.

([3] Executive summary 2-3, [55])

Existe-t-il des similitudes entre cellules souches et cellules cancéreuses ?

Les cancers sont dus à des cellules souches particulières, les cellules souches cancéreuses. Tout comme les autres cellules souches, elles ont la capacité de se multiplier indéfiniment. Contrairement à la prolifération des cellules souches normales qui reste sous le contrôle des cellules environnantes et du reste de l’organisme, la prolifération des cellules souches cancéreuses échappe à ce contrôle.

Les cellules souches cancéreuses proviennent de la mutation de cellules normales. Elles produisent des cellules tumorales, ces dernières étant dépourvues de la capacité de se multiplier indéfiniment. Les métastases sont dues à la migration de cellules souches cancéreuses.

Il n’est pas exclu que certains cancers ne résultent pas du processus décrit ci-dessus.

([7] pp. 89-94, [15], [78])

Où trouve-t-on des cellules souches multipotentes ?

On a trouvé des cellules souches multipotentes dans la plupart des tissus chez l’adulte, y compris dans le cerveau et la moelle épinière. Cependant, il est rarement possible d’en isoler assez pour qu’elles soient utilisables à des fins thérapeutiques.

Les cellules souches ne sont abondantes que dans deux cas : les cellules souches hématoïétiques (Figure 1, Figure 4) et les cellules souches de la peau. Elles sont abondantes car le taux de
Cellules souches et médecine régénérative

renouvellement des cellules est très élevé. Les cellules souches hématopoïétiques se trouvent dans la moelle osseuse et le cordon ombilical.

Les cellules souches de la cornée (ou cellules limbiques) réparent les lésions de la cornée dues au clignement des yeux et l’exposition au milieu extérieur. Elles sont peu nombreuses mais cependant utilisables pour des greffes de cornée.

Les cellules souches mésenchymateuses sont à l’origine du tissu squelettique (graisse, cartilage, cellules osseuses). Elles sont présentes en faible quantité dans la moelle osseuse (stroma stem cell Figure 1).

[[3] p. 23, pp. 37-38, [7] pp. 22-23, p. 78, p. 86, [14], [16], [17], [18], [26], [32], [42], [64] pp. 49-50, [79], [80]]

Où trouve-t-on des cellules souches pluripotentes ?

Il existe dans l’embryon de cinq à sept jours un amas cellulaire constitué de cellules souches pluripotentes (inner cell mass, Figure 6). Elles sont capables de produire tous les tissus sauf le placenta. Elles ne peuvent donc plus produire un embryon viable.

Il existe encore des cellules souches pluripotentes chez l’embryon âgé de cinq à dix semaines. Elles peuvent être extraites des embryons issus d’une interruption volontaire de grossesse. Elles sont situées dans la zone qui donnera plus tard les testicules ou les ovaires. Elles sont appelées cellules germinales embryonnaires ou cellules germinales primordiales. Elles ont approximativement les mêmes propriétés que les cellules souches extraites de l’embryon de cinq à sept jours.

On trouve dans le liquide amniotique des cellules présentant de nombreuses similitudes avec les cellules souches pluripotentes.

La production de cellules souches

Peut-on produire des cellules souches totipotentes ?

Difficilement. Les seules cellules souches totipotentes sont l’œuf et les toutes premières cellules de l’embryon (jusqu’à l’embryon de trois jours chez l’homme). On peut les obtenir par fécondation in vitro ou par transfert du noyau d’une cellule adulte dans un œuf dont on a enlevé le noyau (Figure 5, Figure 6). On parle de clonage dans le second cas.

Figure 5. Création de cellules totipotentes à partir du noyau d’une cellule prélevée chez un adulte (clonage) ([7] p. 82).

Dans tous les cas, il est indispensable d’utiliser un œuf pour obtenir des cellules souches totipotentes.
Cellules souches et médecine régénérative

([7] pp. 81-82, [55])

Quelle est la principale source de cellules souches pluripotentes ?
La principale source de cellules souches pluripotentes est l’embryon de cinq à sept jours (l’*inner cell mass* dans le blastocyste Figure 6).

![Figure 6. Création d’une lignée de cellules souches embryonnaires à partir d’un embryon ([7] p. 81). hESC : cellules souches embryonnaires humaines ; hESC line : une lignée de cellules souches embryonnaires humaines.](image)

Des techniques de cultures spécifiques permettent de multiplier les cellules souches embryonnaires à volonté. On parle alors de lignées de cellules souches embryonnaires. Plusieurs centaines de lignées de cellules souches embryonnaires sont disponibles pour la recherche.

La mise au point de techniques adaptées aux cellules embryonnaires humaines a été difficile (il a fallu dix-sept ans pour passer de la culture des cellules embryonnaires de souris à celle des cellules humaines).

([7] pp. 79-85, [39], [109])

D’où viennent les embryons utilisés pour la recherche en France ?
La loi n° 2013-715 du 6 août 2013 stipule : *Une recherche ne peut être menée qu’à partir d’embryons conçus in vitro dans le cadre d’une assistance médicale à la procréation et qui ne font plus l’objet d’un projet parental. La recherche ne peut être effectuée qu’avec le consentement écrit préalable du couple dont les embryons sont issus, ou du membre survivant de ce couple, par ailleurs dûment informés des possibilités d’accueil des embryons par un autre couple ou d’arrêt de leur conservation. (…) Le consentement doit être confirmé à l’issue d’un délai de réflexion de trois mois.*

Quelques chiffres :

- 32 131 embryons congelés ne faisaient plus l’objet d’un projet parental fin 2011.

([60] pp. 66-68, [61])

Quel est le droit sur l’utilisation d’embryons à des fins de recherche dans les autres pays ?
Les États qui ont une législation à ce sujet peuvent être regroupés en quatre classes (Figure 7) :

- Les politiques permisives (ex : le transfert du noyau d’une cellule adulte dans un œuf (SCNT) est autorisé sous certaines conditions).
- Les compromis permisifs (ex : le SCNT est interdit et la recherche utilisant des embryons surnuméraires n’est pas interdite).
Cellules souches et médecine régénérative

- Les compromis restrictifs (ex : la recherche est permise avec des lignées cellulaires créées avant une certaine date).
- L’interdiction totale.

NB. Tous les pays interdisent de créer des embryons afin de cloner un être humain (l’équivalent du processus décrit Figure 2).

Il n’y a pas de législation à l’échelle des Etats-Unis ou de l’Union européenne, la loi diffère selon les États.

Les débats sur le clonage par transfert du noyau d’une cellule adulte dans un œuf (SCNT) ont été relancés en 2014 quand trois équipes ont fabriqué des cellules souches embryonnaires humaines porteuses du génome de personnes existantes. La question sous-jacente est Est-il légitime de créer un embryon afin de traiter une personne en particulier ?

([95], [115])

Où en est la controverse aux Etats-Unis pour l’utilisation d’embryons à des fins de recherche ?
La politique fédérale américaine est très fluctuante (Figure 8).

- 1993 – Clinton annule l’interdiction de financer la recherche sur la fécondation humaine.
- 1998 – Création de la première lignée de cellules souches embryonnaires humaines.
- 2005 – Bush met son veto à un amendement autorisant le financement de la recherche sur des embryons ne faisant plus l’objet d’un projet parental.
- 2009 – Obama autorise le financement des recherches sur 198 lignées.

Figure 8. Politiques nationales pour la recherche sur l’embryon en juin 2014 ([115]).
Cellules souches et médecine régénérative

- 2011 – Le blocage des financements est levé en appel mais le procès se poursuit.
- 2012 – L’utilisation ou non des fonds fédéraux pour les recherches sur l’embryon est un des thèmes de la campagne présidentielle.
- 2013 – La Cour suprême clôt le procès de 2010 et confirme le financement des recherches avec des fonds fédéraux.

Figure 8. Part des publications portant sur les cellules souches embryonnaires humaines sur l’ensemble de la production scientifique des États-Unis ([87]).

Tout ceci n’interdit pas les financements privés ou ceux venant des États (ex : Californie), sous réserve que les laboratoires puissent prouver la bonne utilisation de l’argent fédéral.

([59], [87])

Peut-on produire des cellules souches pluripotentes à partir de cellules adultes ?

Oui. La première méthode a été le clonage, c’est-à-dire l’introduction du noyau d’une cellule adulte dans un œuf, suivie de la production de lignées de cellules pluripotentes à partir de l’*inner cell mass* (Figure 2, Figure 6). La technique est dénommée *transfert du noyau d’une cellule somatique* (SCNT).

A partir de 2001, les chercheurs ont su fusionner des cellules adultes avec des cellules souches embryonnaires (bande du haut Figure 9).

On a découvert en 2006 quatre gènes dont l’activité conjointe transforme n’importe quelle cellule en cellule souche pluripotente. Les cellules produites sont appelées cellules souches pluripotentes induites (iPSC) (bande du bas Figure 9).
Cellules souches et médecine régénérative

Figure 9. Production de cellules souches pluripotentes à partir de cellules adultes. La méthode iPSC a été découverte en 2006 ([7] pp. 81-82, [39], [55]). hESC : cellule souche embryonnaire humaine.

Les iPSC ont révolutionné la recherche sur les cellules souches, ce qui a valu le prix Nobel à l’auteur de cette découverte.

([7] pp. 81-82, [39], [55])

La recherche sur les cellules souches pluripotentes

Comment en est-on arrivé aux cellules souches pluripotentes induites (iPSC) ?

La découverte des iPSC est le fruit des recherches dans trois domaines : 1) le clonage ; 2) le contrôle génétique de la différenciation cellulaire ; 3) l’étude des cellules souches embryonnaires.

De grandes étapes ponctuent cette histoire (Figure 10) :

2. En 1987, la preuve que l’expression d’un seul gène suffit pour transformer une cellule de la peau en une cellule du muscle.
Cellules souches et médecine régénérative

Figure 10. Les grandes étapes des recherches qui ont conduit aux cellules souches pluripotentes induites (iPS) : I) le clonage ; II) le contrôle génétique de la différenciation cellulaire ; III) la culture des cellules souches embryonnaires ([92]). LIF : identification des facteurs permettant la culture des cellules embryonnaires de souris.

([39], [55], [92])

Pourquoi la découverte des cellules souches pluripotentes induites est-elle si importante ?
L’induction de cellules souches pluripotentes est une technique simple, maîtrisée dans des centaines de laboratoires dans le monde.

Elle permet de produire en quantité illimitée des cellules porteuses d’une maladie après en avoir extrait quelques-unes chez un malade (Figure 11). Ceci permet d’étudier la maladie et de chercher des traitements sans passer par un modèle animal. C’est particulièrement important pour tous les cas où la maladie n’a pas un bon équivalent chez l’animal (ex : maladies du système nerveux central).

Les tests de toxicologie sont un autre débouché très prometteur. En effet, les iPSC permettent une très forte automatisation et la suppression des tests sur les animaux (Figure 11).

Figure 11. Utilisation des cellules souches pluripotentes induites humaines (iPSC) pour la R&D dans l’industrie pharmaceutique ([37]). a) cultures de cellules reproduisant une maladie ; b) recherche des molécules actives ; c) tests de toxicité.

L’utilisation des iPSC en médecine régénérative est présentée dans un autre chapitre. C’est un objectif plus lointain.

([37], [39], [55], [64] pp. 52-55, [92])

Pourquoi faut-il diversifier les sources de cellules souches pluripotentes ?
Une lignée de cellules souches correspond à un individu. Elle ne peut pas à elle seule refléter la diversité génétique de la population humaine. Le problème est double :

Étudier une maladie sur une seule lignée d’iPSC, c’est comme l’étudier sur un seul malade. On a toutes les chances de tirer des conclusions erronées. Si l’étude débouche sur un traitement, il y a de grands risques pour qu’il soit sans effet sur la majeure partie de la population. En revanche travailler sur de nombreuses lignées revient à faire un essai clinique multicentrique. Les essais cliniques...
Cellules souches et médecine régénérative

multicentriques sont devenus une norme internationale car ils limitent les biais dans la population soumise aux tests.

Il y a très peu de chances pour qu’une lignée ait un groupe HLA compatible avec celui du malade (les groupes HLA jouent pour les greffes le même rôle que les groupes sanguins pour les transfusions). Au Japon par exemple, il faut disposer de 140 lignées pour avoir neuf chances sur dix d’en trouver une dont le groupe HLA convient au receveur. La nécessité de disposer constamment d’un grand nombre de lignées est une des limites de la médecine régénérative.

([30], [39], [52], [64] pp. 52-55, [71], [92], [113], [114])

Les cellules souches pluripotentes induites remplacent-elles les cellules embryonnaires ?

Actuellement la réponse est non et il est trop tôt pour savoir si les iPSC remplaceront totalement les cellules souches embryonnaires pour la médecine régénérative.

Un des problèmes est que l’on ne maîtrise pas suffisamment la technique d’induction des iPSC pour être sûr d’aboutir à l’état le plus proche possible d’une cellule souche embryonnaire (Figure 12).

![Figure 12](image)

Figure 12. Les propriétés des cellules souches pluripotentes varient d’une lignée à l’autre. Les variations sont plus importantes pour les iPSC que pour les cellules souches embryonnaires, mais elles se recoupent en grande partie ([31]).

Les cellules souches embryonnaires restent incontournables pour étudier les mécanismes qui déterminent le type cellulaire car c’est le seul cas où l’on est sûr que le processus se déroule normalement. La compréhension et la maîtrise de ces mécanismes est indispensable pour produire en quantité les cellules souches multipotentes dont on a besoin en médecine régénérative.

La Figure 13 retrace les grandes étapes de l’histoire de la recherche sur les cellules pluripotentes et montre l’importance accordée aux différents types de cellules souches dans les recherches actuelles.
Cellules souches et médecine régénérative

Figure 13. Thèmes abordés dans les publications scientifiques sur les cellules souches pluripotentes ([52]). Development and pluripotency : étude des mécanismes mis en jeu au cours du développement d’un organisme ; ES : cellules souches embryonnaires.

([31], [52], [55], [64] pp. 47-48, [88])

Où en est la recherche sur les cellules souches pluripotentes ?
La recherche sur les cellules souches pluripotentes vise à comprendre les mécanismes moléculaires qui permettent de passer d’une cellule souche à deux cents types de cellules différenciées. C’est une question fondamentale en biologie. Elle est aussi susceptible de déboucher sur des applications médicales (Figure 14).

Figure 14. Les grandes étapes de la recherche sur les iPSC ([31]). Direct reprogramming : changement de type cellulaire sans passer par une dédifférenciation jusqu’au stade de la cellule souche pluripotente.

Un premier axe est l’identification des molécules et des gènes qui contrôlent la différenciation. Beaucoup d’études portent sur les cellules du système nerveux, du cœur et du pancréas.

Un second axe est la compréhension du rôle que joue l’organisation tridimensionnelle dans la différenciation cellulaire (un tissu ou un organe n’est pas un amas de cellules en vrac). Beaucoup d’études portent sur le système nerveux, les vaisseaux sanguins, les os et les cartilages, le foie.
Cellules souches et médecine régénérative

La recherche a aussi des objectifs plus opérationnels comme par exemple la définition des bonnes pratiques de fabrication (Good Manufacturing Practice – GMP) pour la production en masse de cellules d’un type parfaitement déterminé.

Les cellules souches pluripotentes peuvent servir à des fins plus immédiates : études in vitro de maladies pour lesquelles on n’a pas de modèle animal (Disease modelling, Drug development and pluripotency), tests de toxicité in vitro (Figure 11, Figure 13).

([37], [52], [81])

Où se fait la recherche sur les cellules souches pluripotentes ?

La recherche sur les cellules souches embryonnaires humaines et les iPSC se déroule principalement aux Etats-Unis, en Chine, au Japon, au Royaume-Uni et en Allemagne, la moitié des laboratoires les plus productifs sont en Asie (Tableau 1).

<table>
<thead>
<tr>
<th>#</th>
<th>Top Countries</th>
<th>Human Embryonic Stem Cell</th>
<th>Induced Pluripotent Stem Cells</th>
<th>Top Cities</th>
<th>Human Embryonic Stem Cell</th>
<th>Induced Pluripotent Stem Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>United States</td>
<td>2 975</td>
<td>1 906</td>
<td>Los Angeles</td>
<td>247</td>
<td>182</td>
</tr>
<tr>
<td>2</td>
<td>China</td>
<td>721</td>
<td>525</td>
<td>Boston</td>
<td>180</td>
<td>139</td>
</tr>
<tr>
<td>3</td>
<td>Japan</td>
<td>515</td>
<td>714</td>
<td>New York City</td>
<td>206</td>
<td>129</td>
</tr>
<tr>
<td>4</td>
<td>United Kingdom</td>
<td>622</td>
<td>286</td>
<td>Tokyo</td>
<td>118</td>
<td>183</td>
</tr>
<tr>
<td>5</td>
<td>Germany</td>
<td>431</td>
<td>298</td>
<td>Beijing</td>
<td>159</td>
<td>121</td>
</tr>
<tr>
<td>6</td>
<td>France</td>
<td>248</td>
<td>135</td>
<td>Singapore</td>
<td>179</td>
<td>98</td>
</tr>
<tr>
<td>7</td>
<td>Canada</td>
<td>257</td>
<td>103</td>
<td>Shanghai</td>
<td>146</td>
<td>118</td>
</tr>
<tr>
<td>8</td>
<td>South Korea</td>
<td>234</td>
<td>132</td>
<td>Stanford</td>
<td>129</td>
<td>120</td>
</tr>
<tr>
<td>9</td>
<td>Italy</td>
<td>234</td>
<td>102</td>
<td>Seoul</td>
<td>145</td>
<td>81</td>
</tr>
<tr>
<td>10</td>
<td>Spain</td>
<td>214</td>
<td>127</td>
<td>London</td>
<td>160</td>
<td>75</td>
</tr>
<tr>
<td>11</td>
<td>Australia</td>
<td>211</td>
<td>95</td>
<td>Kyoto</td>
<td>88</td>
<td>153</td>
</tr>
<tr>
<td>12</td>
<td>Singapore</td>
<td>179</td>
<td>98</td>
<td>Cambridge</td>
<td>109</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>Netherlands</td>
<td>141</td>
<td>58</td>
<td>Baltimore</td>
<td>95</td>
<td>81</td>
</tr>
<tr>
<td>14</td>
<td>Israel</td>
<td>132</td>
<td>68</td>
<td>Cambridge UK</td>
<td>104</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>Taiwan</td>
<td>96</td>
<td>76</td>
<td>San Francisco</td>
<td>100</td>
<td>71</td>
</tr>
<tr>
<td>16</td>
<td>Sweden</td>
<td>121</td>
<td>52</td>
<td>Madison</td>
<td>99</td>
<td>65</td>
</tr>
<tr>
<td>17</td>
<td>Iran</td>
<td>80</td>
<td>56</td>
<td>Guangzhou</td>
<td>66</td>
<td>79</td>
</tr>
<tr>
<td>18</td>
<td>Belgium</td>
<td>89</td>
<td>31</td>
<td>Toronto</td>
<td>90</td>
<td>52</td>
</tr>
<tr>
<td>19</td>
<td>India</td>
<td>82</td>
<td>31</td>
<td>San Diego</td>
<td>87</td>
<td>54</td>
</tr>
<tr>
<td>20</td>
<td>Switzerland</td>
<td>70</td>
<td>37</td>
<td>Houston</td>
<td>93</td>
<td>31</td>
</tr>
<tr>
<td>21</td>
<td>Brazil</td>
<td>62</td>
<td>38</td>
<td>Bethesda</td>
<td>78</td>
<td>48</td>
</tr>
<tr>
<td>22</td>
<td>Hong Kong</td>
<td>47</td>
<td>39</td>
<td>Barcelona</td>
<td>64</td>
<td>51</td>
</tr>
</tbody>
</table>

Tableau 1. Production scientifique des principaux pays dans la recherche sur les cellules souches embryonnaires humaines et les cellules souches pluripotentes induites ([97], [98]). La production est mesurée par le nombre d’articles scientifiques entre le 1er janvier 2010 et le 25 mai 2014. Top Countries : Pays les plus productifs. Top Cities : Villes accueillant les laboratoires les plus productifs. Le classement est fait sur la moyenne des rangs de Human Embryonic Stem Cell et Induced Pluripotent Stem Cells.

Le nombre de publications est proportionnel au nombre de chercheurs actifs dans le domaine, il ne donne pas d’autres indications.

On utilise souvent pour l’évaluation de la recherche le nombre de fois où un article est cité (citation index). Cet indicateur reflète l’insertion des équipes dans le réseau de la recherche américaine. Il ne mesure pas nécessairement l’importance scientifique des travaux. Par exemple, la découverte des iPSC en 2006 a véritablement révolutionné la discipline, au point d’être très rapidement couronnée par le prix Nobel. L’équipe qui a fait cette découverte est japonaise et travaille au Japon. Et pourtant
Cellules souches et médecine régénérative

rien ne laisse soupçonner le rôle majeur de ce pays quand on regarde le citation index des publications portant sur les iPSC (Figure 15).

Figure 15. Distribution du nombre moyen annuel de citations des articles scientifiques portant sur les cellules souches pluripotentes induites (iPSC) pendant la période 2009-2011 ([36]). Pour mémoire, les iPSC ont été découvertes au Japon. ([36], [97], [98])

L’utilisation des cellules souches en médecine

Thérapie cellulaire, médecine régénérative, de quoi parle-t-on ?
La thérapie cellulaire et la médecine régénérative sont des traitements qui s’inscrivent dans la logique des greffes de tissus et des greffes d’organes tout en supprimant son principal défaut, le nombre nécessairement limité de donneurs. La greffe est remplacée par l’injection de cellules saines qui reconstituent à terme un tissu ou un organe fonctionnel.

La thérapie cellulaire est une des techniques mises en œuvre dans la médecine régénérative. Cette dernière fait aussi appel à d’autres disciplines (ex : spécialistes de biomatériaux pour concevoir la matrice des organes artificiels, ingénieurs pour l’industrialisation des procédés de fabrication).

([64] p. 51)

Quelles sont les thérapies cellulaires utilisées couramment ?
Les thérapies cellulaires actuelles utilisent des cellules souches multipotentes prélevées chez l’adulte ou le nouveau-né. Il s’agit de la transplantation de cellules souches du sang, de la greffe de peau et de la greffe de cornée.

En 2012, on a compté en France 2 766 autogreffes de cellules souches du sang et 1 721 transplantations venant d’un donneur. Les autogreffes permettent de reconstituer la moelle osseuse après un traitement anticancéreux.

La thérapie cellulaire ne peut réussir que si le donneur et le receveur ont le même groupe HLA (les groupes HLA jouent pour les greffes le même rôle que les groupes sanguins pour les transfusions). Il y a une chance sur quatre pour que deux frères soient du même groupe. Mais même dans ce cas, une transplantation de cellules souches du sang entre frères déclenche une réaction de rejet dans 30 à 40 % des cas et elle est mortelle dans 10 % des cas. Les cellules prélevées dans le sang du cordon...
Cellules souches et médecine régénérative

ombilical déclenchent rarement un rejet de greffe aussi violent. En revanche un cordon ne contient pas assez de cellules pour soigner un adulte.

([2] pp. 32-33, [14], [18], [26], [60] p. 52, p. 58)

Les thérapies cellulaires les plus courantes font-elles encore l’objet de recherches ?

Oui. Le Tableau 2 donne la liste des pays les plus actifs dans la recherche sur la transplantation de cellules souches du sang ou sur les greffes de peau. Les pays leaders sont les Etats-Unis, la Chine, le Japon, l’Allemagne et l’Italie, la moitié des laboratoires les plus productifs sont en Asie.

<table>
<thead>
<tr>
<th>#</th>
<th>Top Countries</th>
<th>Bone Marrow</th>
<th>Umbilical Cord</th>
<th>Skin</th>
<th>Top Cities</th>
<th>Bone Marrow</th>
<th>Umbilical Cord</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>United States</td>
<td>3 250</td>
<td>425</td>
<td>53</td>
<td>Beijing</td>
<td>322</td>
<td>101</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>China</td>
<td>2 255</td>
<td>540</td>
<td>10</td>
<td>Seoul</td>
<td>199</td>
<td>105</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Japan</td>
<td>962</td>
<td>90</td>
<td>9</td>
<td>Shanghai</td>
<td>300</td>
<td>47</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Germany</td>
<td>664</td>
<td>111</td>
<td>16</td>
<td>Guangzhou</td>
<td>187</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Italy</td>
<td>564</td>
<td>83</td>
<td>4</td>
<td>Boston</td>
<td>234</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Spain</td>
<td>241</td>
<td>152</td>
<td>7</td>
<td>Tianjin</td>
<td>137</td>
<td>56</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>United Kingdom</td>
<td>396</td>
<td>59</td>
<td>9</td>
<td>Houston</td>
<td>151</td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>India</td>
<td>241</td>
<td>61</td>
<td>1</td>
<td>Tehran</td>
<td>105</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Canada</td>
<td>264</td>
<td>58</td>
<td>4</td>
<td>London</td>
<td>137</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>France</td>
<td>362</td>
<td>46</td>
<td>10</td>
<td>Chongqing</td>
<td>124</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>South Korea</td>
<td>369</td>
<td>33</td>
<td>10</td>
<td>Tokyo</td>
<td>195</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>Taiwan</td>
<td>163</td>
<td>65</td>
<td>1</td>
<td>Singapore</td>
<td>80</td>
<td>33</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Iran</td>
<td>167</td>
<td>48</td>
<td>2</td>
<td>New York City</td>
<td>165</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>Brazil</td>
<td>216</td>
<td>43</td>
<td>1</td>
<td>Baltimore</td>
<td>80</td>
<td>32</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Netherlands</td>
<td>211</td>
<td>34</td>
<td>2</td>
<td>Paris</td>
<td>110</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>Switzerland</td>
<td>108</td>
<td>46</td>
<td>1</td>
<td>Nanjing</td>
<td>91</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>Australia</td>
<td>231</td>
<td>24</td>
<td>3</td>
<td>Wuhan</td>
<td>112</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Belgium</td>
<td>110</td>
<td>25</td>
<td>4</td>
<td>Toronto</td>
<td>69</td>
<td>27</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>Poland</td>
<td>110</td>
<td>25</td>
<td>4</td>
<td>Los Angeles</td>
<td>134</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>Singapore</td>
<td>81</td>
<td>33</td>
<td>2</td>
<td>Bethesda</td>
<td>117</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>Israel</td>
<td>126</td>
<td>13</td>
<td>1</td>
<td>Xi’an</td>
<td>99</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>Portugal</td>
<td>69</td>
<td>26</td>
<td>-</td>
<td>Taipei</td>
<td>64</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>Sweden</td>
<td>94</td>
<td>12</td>
<td>3</td>
<td>Hong Kong</td>
<td>56</td>
<td>20</td>
<td>-</td>
</tr>
</tbody>
</table>

Tableau 2. Production scientifique des principaux pays dans la recherche sur la transplantation de cellules souches du sang et sur les greffes de peau ([99], [100], [101]). La production est mesurée par le nombre d’articles scientifiques entre le 1er janvier 2010 et le 25 mai 2014. Top Countries : Pays les plus productifs. Top Cities : Villes accueillant les laboratoires les plus productifs. Le classement est fait sur la moyenne des rangs de Bone Marrow et Umbilical Cord. Bone Marrow : moelle osseuse ; Umbilical Cord : cordon ombilical.

Les essais cliniques sur l’amélioration des traitements à base de cellules souches hématoPOiétiques se déroulent principalement aux Etats-Unis (Figure 16).
Cellules souches et médecine régénérative

Figure 16. Localisation en mai 2014 des essais cliniques sur des traitements utilisant des cellules souches hématopoïétiques ([103]). Situation le 27 mai 2014.

L’amélioration de la transplantation de cellules souches du sang porte principalement sur : 1) la différenciation des cellules du sang en laboratoire à partir de cultures de cellules souches (ex : production massive de globules rouges) ; 2) l’augmentation du nombre de cellules souches pouvant être obtenues à partir du sang du cordon ombilical.

Mais ceci n’a pas empêché la création de thérapies originales contre le cancer de la prostate (deux AMM aux Etats-Unis), la réparation des cartilages du genou (une AMM aux Etats-Unis et une en Europe) et la réparation de la peau (deux AMM aux Etats-Unis).

([14], [18], [26], [54], [75], [99], [100], [101], [103])

Qu’attend-on des traitements à base de cellules souches mésenchymateuses ?

Les cellules souches mésenchymateuses (*stromal stem cell* Figure 1) font l’objet d’une recherche très active. Quatre traitements avaient une AMM en juin 2014 (un au Canada et trois en Corée).

Les cellules souches mésenchymateuses présentent des caractéristiques qui les rendent *a priori* très intéressantes : 1) elles sont faciles à extraire de la moelle osseuse ou du tissu adipeux ; 2) elles peuvent facilement être produites en grande quantité ; 3) elles ont une durée de vie limitée, ce qui diminue le risque qu’elles se transforment en cellules cancéreuses.

L’utilisation la plus immédiate est la réparation des os, en associant les cellules souches mésenchymateuses à des biomatériaux qui leur fournissent une matrice solide.

Mais le principal intérêt des cellules souches mésenchymateuses vient de leurs propriétés anti-inflammatoires et de leur capacité d’inhiber la réaction immunologique. Elles devraient permettre d’augmenter l’efficacité de la thérapie cellulaire en diminuant le risque de rejet de greffe. A ce titre, elles ne remplacent pas les cellules souches, elles servent d’adjuvant.

Une autre application envisagée est le traitement des maladies auto-immunes. C’est une piste beaucoup plus lointaine.
Cellules souches et médecine régénérative

([24], [32], [54], [64] pp. 49-51, [65], [75])

Où se fait la recherche sur les cellules souches mésenchymateuses ?

La recherche sur les cellules souches mésenchymateuses se fait principalement en Asie. Ceci est vrai tout autant pour la production scientifique que pour les essais cliniques (Tableau 3, Figure 17). Ceci n’empêche pas une forte présence des leaders occidentaux de la recherche en thérapie cellulaire (Etats-Unis, Allemagne, Italie).

<table>
<thead>
<tr>
<th>#</th>
<th>Top Countries</th>
<th>Top Cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>United States</td>
<td>3 641</td>
</tr>
<tr>
<td>2</td>
<td>China</td>
<td>3 473</td>
</tr>
<tr>
<td>3</td>
<td>Japan</td>
<td>952</td>
</tr>
<tr>
<td>4</td>
<td>Germany</td>
<td>904</td>
</tr>
<tr>
<td>5</td>
<td>South Korea</td>
<td>897</td>
</tr>
<tr>
<td>6</td>
<td>Italy</td>
<td>849</td>
</tr>
<tr>
<td>7</td>
<td>United Kingdom</td>
<td>507</td>
</tr>
<tr>
<td>8</td>
<td>France</td>
<td>387</td>
</tr>
<tr>
<td>9</td>
<td>Taiwan</td>
<td>352</td>
</tr>
<tr>
<td>10</td>
<td>Spain</td>
<td>338</td>
</tr>
<tr>
<td>11</td>
<td>Canada</td>
<td>316</td>
</tr>
<tr>
<td>12</td>
<td>Netherlands</td>
<td>306</td>
</tr>
<tr>
<td>13</td>
<td>Iran</td>
<td>291</td>
</tr>
<tr>
<td>14</td>
<td>Australia</td>
<td>248</td>
</tr>
<tr>
<td>15</td>
<td>India</td>
<td>243</td>
</tr>
<tr>
<td>16</td>
<td>Brazil</td>
<td>242</td>
</tr>
<tr>
<td>17</td>
<td>Singapore</td>
<td>222</td>
</tr>
<tr>
<td>18</td>
<td>Switzerland</td>
<td>149</td>
</tr>
<tr>
<td>19</td>
<td>Belgium</td>
<td>148</td>
</tr>
<tr>
<td>20</td>
<td>Ireland</td>
<td>125</td>
</tr>
</tbody>
</table>

Tableau 3. Production scientifique dans le domaine de la recherche sur les cellules souches mésenchymateuses ([102]). La production est mesurée par le nombre d’articles scientifiques entre le 1er janvier 2010 et le 25 mai 2014.

Les essais cliniques portent principalement sur les applications aux maladies cardio-vasculaires. Moins de 10 % en sont à l’évaluation de l’efficacité du traitement sur un échantillon représentatif de patients (phase III). Tous les autres en sont encore à la détermination des doses acceptables et des effets secondaires (phases I et II).

Figure 17. Localisation des essais cliniques sur des traitements utilisant des cellules souches mésenchymateuses ([104]). Situation le 27 mai 2014.
Cellules souches et médecine régénérative

([75], [102], [104])

Quelles sont les thérapies à base de cellules souches pluripotentes ?

On est encore très loin de thérapies opérationnelles.

Au 28 mai 2014, il y avait dans le monde huit essais cliniques en cours ou terminés avec des cellules souches embryonnaires et aucun essai clinique avec des iPSC. Les huit essais étaient en phase I (évaluation des effets indésirables chez des volontaires en bonne santé). Un des essais portait sur les maladies coronariennes (cardiopathies ischémiques) et les sept autres sur une maladie oculaire (la dégénérescence de la macula).

Les chercheurs espèrent cependant que les cellules souches pluripotentes pourront traiter un jour un très grand nombre de maladies (ex : diabète, maladies cardiovasculaires, dystrophie musculaire, troubles neurologiques, lésions de la moelle épinière).

Les publications montrent que les chercheurs parient beaucoup sur les cellules pluripotentes pour trouver un traitement pour les maladies d’Alzheimer et de Huntington (Tableau 4).

<table>
<thead>
<tr>
<th>Maladie</th>
<th>Embryonic Stem Cells</th>
<th>Induced Pluripotent Stem Cells</th>
<th>Cell- and Tissue-Based Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident vasculaire cérébral</td>
<td>33</td>
<td>31</td>
<td>461</td>
</tr>
<tr>
<td>Dégénérescence maculaire</td>
<td>49</td>
<td>35</td>
<td>165</td>
</tr>
<tr>
<td>Diabète</td>
<td>209</td>
<td>106</td>
<td>1 955</td>
</tr>
<tr>
<td>Dystrophie musculaire</td>
<td>32</td>
<td>35</td>
<td>156</td>
</tr>
<tr>
<td>Lésions à la moelle épinière</td>
<td>110</td>
<td>54</td>
<td>734</td>
</tr>
<tr>
<td>Leucémie</td>
<td>369</td>
<td>105</td>
<td>4 466</td>
</tr>
<tr>
<td>Maladie d’Alzheimer</td>
<td>52</td>
<td>61</td>
<td>159</td>
</tr>
<tr>
<td>Maladie de Huntington</td>
<td>57</td>
<td>42</td>
<td>117</td>
</tr>
<tr>
<td>Maladie de Parkinson</td>
<td>149</td>
<td>149</td>
<td>272</td>
</tr>
<tr>
<td>Maladies chroniques du foie</td>
<td>12</td>
<td>10</td>
<td>1 852</td>
</tr>
<tr>
<td>Maladies coronariennes</td>
<td>152</td>
<td>83</td>
<td>1 673</td>
</tr>
<tr>
<td>Maladies du rein</td>
<td>88</td>
<td>45</td>
<td>1 735</td>
</tr>
<tr>
<td>Paralysie cérébrale</td>
<td>4</td>
<td>2</td>
<td>54</td>
</tr>
<tr>
<td>Sclérose en plaques</td>
<td>19</td>
<td>10</td>
<td>283</td>
</tr>
<tr>
<td>Sclérose latérale amyotrophique</td>
<td>31</td>
<td>52</td>
<td>150</td>
</tr>
</tbody>
</table>

Tableau 4. Production scientifique mondiale dans les applications thérapeutiques de la recherche sur les cellules souches.

La production est mesurée par le nombre d’articles scientifiques entre le 1er janvier 2010 et le 25 mai 2014 (requêtes sur gopubmed). La colonne Cell- and Tissue-Based Therapy additionne les publications relevant des approches cellulaires et tissulaires classiques et celles sur les cellules pluripotentes.

Pour mémoire, le tout premier essai clinique pour un traitement à base de cellules souches embryonnaires avait été lancé en 2010 dans le but de réparer les lésions à la moelle épinière. L’essai a été abandonné au bout de quelques mois à cause d’un changement de stratégie industrielle du promoteur.

([22], [64] p. 52, [81], [105], [106], [112])
Les essais cliniques, entre rigueur scientifique et attentes du public

Quelle est la législation sur les thérapies cellulaires ?
Dans beaucoup de pays, la législation sur les thérapies cellulaires est plus souple que la législation générale sur les médicaments. C’est tout particulièrement le cas pour les traitements à base de cellules mésenchymateuses.

Les essais cliniques sont considérablement allégés (ex : Japon, Corée), quand ils ne sont pas tout simplement supprimés pour les thérapies utilisant les propres cellules du patient (ex : Australie, Mexique, Texas). Même dans le cas où il y a des essais, ceux-ci semblent souvent manquer de rigueur scientifique.

Cet assouplissement s’inscrit dans un climat général dominé par la nécessité de transformer très rapidement les résultats des recherches en laboratoire en traitements (translational medicine ou médecine translationnelle). Paradoxalement, on assiste dans le même temps à un durcissement de l’encadrement réglementaire des thérapies cellulaires en Chine et en Inde.

L’assouplissement de la législation sur les thérapies cellulaires s’accompagne de la prolifération de traitements qui n’ont fait l’objet d’aucun contrôle. Ils sont pratiqués dans de nombreux pays pour une diversité étonnante de maladies. L’Asie n’a pas l’exclusivité des médecins pratiquant ce type de traitement. On en trouve aussi en Amérique du Nord, en Australie et en Europe.

Qu’est-ce qu’un essai clinique ?
Un essai clinique est une recherche biomédicale pratiquée chez l’homme en vue du développement des connaissances biologiques ou médicales. Il ne peut être réalisé qu’avec l’autorisation des pouvoirs publics. Les personnes qui se prêtent à l’essai sont volontaires et elles sont au préalable informées « de façon loyale et exhaustive ».

Dans le cas des médicaments, les essais cliniques ont pour but de prouver que le traitement est sûr et efficace. Les deux conditions sont nécessaires pour que le traitement obtienne une autorisation de mise sur le marché.

L’histoire montre qu’il est effectivement indispensable que les pouvoirs publics protègent les patients contre des produits sans valeur thérapeutique ou dangereux pour la santé. Ainsi, l’obligation de démontrer l’efficacité d’un produit pour obtenir le droit de le commercialiser a entraîné le retrait de près de 40 % des médicaments en 1962 aux États-Unis.

Pourquoi les essais cliniques sont-ils si lourds ?
Les autorités qui évaluent les médicaments craignent de rendre un avis favorable pour des traitements d’efficacité contestable ou présentant un risque anormalement élevé pour une partie de la population. Ceci les conduit à imposer des essais sur un très grand nombre de patients.
Cellules souches et médecine régénérative

Aux États-Unis, le nombre de patients en phase III dépend de la fréquence de la maladie dans la population. Il va de 100 à 200 personnes pour une maladie génétique rare jusqu’à 30 000 personnes pour les traitements contre le cholestérol (oui, trente mille).

Les autorités américaines sont particulièrement prudentes quand il s’agit de traitements novateurs. La première entreprise qui a proposé un traitement à base de cellules souches embryonnaires a bataillé plus de deux ans avant de pouvoir lancer la phase I d’un essai clinique.

Certains pays, dont la Chine, ont une attitude plus entreprenante. Ils comptent surtout sur le suivi après la mise sur le marché pour détecter des effets secondaires rares (Tableau 5).

<table>
<thead>
<tr>
<th>Phase</th>
<th>Objectif</th>
<th>Nombre de personnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>Détermination des doses sans danger pour des volontaires sains</td>
<td>Etats-Unis : 20-80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chine : 20-30</td>
</tr>
<tr>
<td>Phase II</td>
<td>Efficacité du traitement pour un groupe de malades homogène et identification des effets secondaires</td>
<td>Etats-Unis : 100-300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chine : plus de 100</td>
</tr>
<tr>
<td>Phase III</td>
<td>Idem phase II en diversifiant l’origine des malades et en comparant avec les traitements existants</td>
<td>Etats-Unis : 1 000-3 000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chine : plus de 300</td>
</tr>
<tr>
<td>Phase IV</td>
<td>Retour d’expérience après commercialisation (ex : effets secondaires rares et complications tardives)</td>
<td>Pharmaco-vigilance assurée principalement par les médecins traitants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plus de 1 000</td>
</tr>
</tbody>
</table>

Tableau 5. Les différentes étapes des essais cliniques et leur mise en œuvre aux États-Unis et en Chine dans le cas de pathologies fréquentes ([8], [25]).

([8], [22], [25], [29], [49])

Quels sont les arguments juridico-scientifiques sur les thérapies cellulaires non autorisées ?

On trouve un peu partout dans le monde des médecins qui utilisent des cellules mésenchymateuses contre des maladies jusqu’ici incurables. Ils prélevent les cellules dans le tissu adipeux du patient et les injectent au niveau de l’organe lésé. C’est une pratique controversée car elle n’est pas fondée sur des essais cliniques.

Dire si elle est légale dépend du statut des cellules injectées : est-ce l’équivalent du sang stocké dans les centres de transfusion sanguine ou d’une autogreffe de moelle osseuse (les colonnes de droite et de gauche de la Figure 18) ? L’autorisation des pouvoirs publics n’est obligatoire que dans le premier cas.
La réponse varie selon les pays. L’Australie considère qu’elles entrent dans la même catégorie que les autogreffes alors qu’elles sont assimilées au sang stocké aux Etats-Unis et dans l’Union européenne.

Un contrôle strict ne s’est pas imposé d’emblée. La Chine est passée par étape d’une réglementation « à l’australienne » à une réglementation « à l’européenne ». La FDA n’a obtenu gain de cause devant la justice américaine qu’en juillet 2012. Et les lobbies continuent leur pression pour obtenir une déréglementation de ce type de traitement (ex : Texas, Italie).

((27), (28), (40), (44), (46), (47), (56), (65), (70), (76), (85), (86))

Une simplification des essais cliniques est-elle envisageable ?

Pour la plupart des chercheurs, les essais cliniques sont le seul moyen d’aboutir à des conclusions scientifiques fiables. Ainsi les chercheurs chinois reconnus à l’étranger considèrent que la faiblesse des effectifs dans leurs essais nuit à la crédibilité scientifique de leur pays.

Cependant certains font remarquer que les procédures sont devenues hors de prix et qu’elles ne débouchent plus sur de nouvelles thérapies. Il s’écoule une douzaine d’années entre l’identification d’une molécule prometteuse en laboratoire et sa commercialisation. Neuf fois sur dix, la molécule est abandonnée car elle ne tient pas ses promesses lors des essais sur l’homme.

Par ailleurs, les pouvoirs publics sont soumis à la pression de la population à qui on fait miroiter des traitements miraculeux : “many heart patients do not have the luxury of waiting many years for exhaustive research to be completed”.

Figure 18. La réglementation des produits biologiques en Australie ((44)).
Cellules souches et médecine régénérative

Une des pistes est de se rapprocher des normes chinoises en comptant sur un suivi sériel en phase IV. La décision de conduire ou pas l’AMM serait prise au bout de quelques années en fonction des résultats. C’est la solution retenue au Japon pour les thérapies cellulaires.

([13], [20], [25], [29], [50], [51], [65], [71])

Le traitement compassionnel correspond-il à un assouplissement des essais cliniques ?

Le traitement compassionnel ne remet pas en cause la logique des essais cliniques. Simplement les objectifs sont différents. Le traitement compassionnel vise à soigner une personne en particulier. Il est en contrepartie difficile d’en tirer des conclusions valables pour l’ensemble de la population. Le but des essais cliniques est le développement de connaissances biologiques ou médicales pour le bénéfice du plus grand nombre possible. Ceci implique en revanche la constitution d’un groupe témoin qui reçoit un traitement qui n’est pas nécessairement le plus efficace (ex : placebo).

Le traitement compassionnel n’est envisageable qu’en l’absence d’alternative thérapeutique. Il consiste généralement en un traitement prometteur en cours d’essais cliniques. Il peut aussi s’agir de l’utilisation d’un traitement en dehors du domaine couvert par l’AMM.

L’encadrement réglementaire et législatif est moins contraignant pour les traitements compassionnels que pour les essais cliniques. La préoccupation des pouvoirs publics est surtout de ne pas ouvrir la porte à d’éventuels charlatans. Le recours au traitement compassionnel nécessite en France une autorisation temporaire d’utilisation délivrée par les pouvoirs publics.

([11], [27], [46], [63], [64] 52-53, [65], [93], [114])

L’industrie, les cellules souches et les thérapies cellulaires

Quels sont les obstacles à une industrialisation rapide des thérapies cellulaires ?

Passer du laboratoire à l’échelle industrielle nécessite au préalable la résolution de nombreux problèmes. Les difficultés sont de trois types : les problèmes éthiques, les incertitudes biologiques (ex : risque de cancer), le changement d’échelle (Tableau 6).

<table>
<thead>
<tr>
<th>Problèmes étiques</th>
<th>Cellules souches embryonnaires</th>
<th>Cellules souches pluripotentes induites</th>
<th>Cellules mésenchymateuses de la moelle osseuse</th>
<th>Cellules mésenchymateuses du tissu adipeux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problème</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risque de cancer</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Instabilité génétique</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risque de rejet de greffe</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production à grande échelle</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Tableau 6. Problèmes éthiques, scientifiques et techniques dans le cas d’une utilisation des thérapies cellulaires à une échelle industrielle ([54]).

Les débats sur l’acceptabilité sociale des thérapies cellulaires influent sur le droit des brevets dans ce domaine et donc sur la rentabilité potentielle pour les investisseurs. Ils soulèvent aussi la question du statut des banques de cellules souches, notamment les banques de sang de cordon ombilical.
Cellules souches et médecine régénérative

([54], [66], [83])

Peut-on breveter des inventions sur les cellules souches pluripotentes humaines ?
La réponse n’était pas claire en juin 2014. La tendance était plutôt non pour les cellules souches embryonnaires et plutôt oui pour les iPSC.

En 2011, la Cour de justice de l’Union européenne a exclu de la brevetabilité l’utilisation d’embryons humains à des fins industrielles ou commerciales ou à des fins de recherche scientifique. Seules les applications directement utiles à l’embryon sont brevetables (à des fins thérapeutiques ou de diagnostic). Toutefois, il appartient aux juridictions nationales de décider si le blastocyste constitue un embryon humain car l’Union européenne n’a pas de compétence légale pour réguler ce domaine.

En 2013, la Cour suprême des Etats-Unis a exclu de la brevetabilité les gènes humains parce qu’ils sont un produit de la nature. On ne sait pas si cette décision sera étendue aux cellules souches humaines.

Les iPSC échappent probablement à l’arrêt de la Cour de justice européenne car il est justifié par le refus d’une destruction massive d’embryons. Il est d’autre part possible d’argumenter qu’elles ne sont pas directement un produit de la nature. L’Université de Kyoto détient les brevets sur la technologie des iPSC.

([19], [21], [23], [72], [73], [82])

Quel est l’encadrement réglementaire des banques de sang de cordon ombilical ?
En France, le don repose sur les principes intangibles du consentement, de la gratuité et de l’anonymat. La conservation de sang de cordon à des fins autologues, c’est-à-dire pour soi-même ou son propre enfant est interdite par la loi. Seuls les établissements autorisés peuvent pratiquer le traitement et la conservation des greffons.

Même si ce n’est pas la raison d’être des banques publiques, l’utilisation autologue n’est pas strictement interdite dans d’autres pays (ex : Royaume-Uni).

On trouve dans beaucoup de pays des sociétés privées assurant le stockage de sang de cordon ombilical moyennant une redevance. Leur légitimité est mise en doute par les comités d’éthique car elles promettent plus qu’elles ne peuvent offrir : la probabilité est très faible que le sang de cordon stocké soit utile un jour au donneur ou à un membre de sa famille.

([4], [6], [12], [62], [67])

Existe-t-il des banques de cellules mésenchymateuses ?
Il n’existe pas à proprement parler de banques de cellules mésenchymateuses car elles peuvent facilement être extraites à tout moment du tissu adipeux. On peut toutefois considérer que la réponse est oui lorsqu’elles sont extraites des banques de sang de cordon ombilical. Il n’y a pas de banques de la moelle osseuse.

Dossier pour l’IHEST
Cellules souches et médecine régénérative

Certaines banques privées de sang de cordon ombilical utilisent les cellules mésenchymateuses du tissu adipeux dans le cadre de la chirurgie esthétique (rajeunissement de la peau). Elles proposent en option un stockage des cellules pour un traitement ultérieur.

([48], [53])

Pourquoi la thérapie cellulaire nécessite-t-elle des quantités industrielles de cellules ?

La thérapie cellulaire est un prolongement de la transfusion sanguine ou des greffes de moelle. Il faut disposer de stocks suffisamment abondants et divers pour pouvoir traiter très rapidement un patient sans risquer le rejet de greffe. Produire les cellules à injecter à partir du patient n’est pas une solution :

- Ça n’a pas de sens s’il s’agit d’une maladie dont l’origine est en grande partie génétique (ex : diabète).
- Les délais de fabrication ne permettent pas de répondre à une urgence. Par exemple, les cellules doivent être injectées dans le mois qui suit une lésion de la moelle épinière pour que le traitement ait des chances de succès alors qu’il faut plusieurs mois pour les préparer.

![Diagramme de cellules somatiques et cellules progénitrices](image)

Figure 19. Stratégie pour le développement d’une thérapie cellulaire des lésions de la moelle épinière ([92]). NS/PCs : cellules multipotentes ou progénitrices du système nerveux ; GMP : bonnes pratiques de fabrication ; SCI : lésion de la moelle épinière.

La solution est de constituer des banques de cellules progénitrices des différents tissus compatibles avec la plupart des groupes HLA présents dans la population (Figure 19). Un tel système n’a de sens qu’à une échelle internationale. Les difficultés techniques et les coûts sont considérables. Il faudra des années pour qu’on dispose de stocks de cellules en quantité non limitée, standardisés, reproductibles, et validés sur le plan de la sécurité et de l’efficacité.

([19], [31], [34], [39], [60] p. 52, p. 55, [77], [92])
Cellules souches et médecine régénérative

Qui finance la R&D sur la thérapie cellulaire ?

<table>
<thead>
<tr>
<th>Country</th>
<th>FY 2012 (Dollars in millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>54,3</td>
</tr>
<tr>
<td>Canada</td>
<td>50,0</td>
</tr>
<tr>
<td>China</td>
<td>92,0</td>
</tr>
<tr>
<td>India</td>
<td>14,1</td>
</tr>
<tr>
<td>Korea</td>
<td>47,0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1,7</td>
</tr>
<tr>
<td>Sweden</td>
<td>8,1</td>
</tr>
<tr>
<td>Taiwan</td>
<td>2,0</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>130,6</td>
</tr>
<tr>
<td>USA</td>
<td>1 467,4</td>
</tr>
</tbody>
</table>

Tableau 7. Financement annuel des fonds publics des recherches sur les cellules souches dans plusieurs pays membres de l’International Stem Cell Forum ([116]). Dans de nombreux pays, ces financements ne font pas l’objet d’une comptabilité séparée. FY : année fiscale.

Aux Etats-Unis, les National Institutes of Health (NIH) ont financé à hauteur de 11 284,5 millions de dollars la recherche sur les cellules souches pendant la période 2002-2013, dont 985,7 millions pour les cellules souches embryonnaires humaines (Figure 20). Il existe aussi des financements locaux d’un montant estimé à quatre ou cinq cents millions de dollars par an. Par exemple, la California’s Stem Cell Agency a distribué, entre 2006 et 2013, 2 064 millions de dollars dont 518,2 millions pour les cellules souches embryonnaires et 289,3 millions pour les iPSC.

Figure 20. Financement de la recherche sur les cellules souches aux Etats-Unis par les National Institutes of Health ([91]). L’augmentation du budget à partir de l’exercice 2008 coïncide avec la présidence d’Obama.

Entre 2007 et 2013, la Commission européenne a accordé 250 millions d’euros à la recherche sur les cellules souches, dont 156,7 millions pour les cellules souches embryonnaires humaines.
Cellules souches et médecine régénérative

En 2013, le gouvernement japonais a investi 170 millions d’euros pour le développement de thérapies cellulaires à partir de cellules souches iPSC. Il prévoit un budget supplémentaire de 650 millions d’euros sur dix ans.

([23], [34], [41], [45], [51], [57], [58] p. 28, p. 34, [69], [74], [89], [91], [107], [116])

Le secteur privé investit-il dans la thérapie cellulaire ?

Les grands groupes pharmaceutiques n’investissent pas dans la thérapie cellulaire. Ils considèrent que les espoirs de commercialisation sont trop lointains et les risques juridiques trop élevés (ex : droits de propriété sur les cellules injectées, brevetabilité). Ils n’ont d’ailleurs jamais investi dans la transplantation de moelle osseuse ou de sang de cordon ombilical.

Il existe environ 700 entreprises de médecine régénérative dans le monde. Ce sont des PME. Une centaine étudie des traitements à base de cellules souches ou de progénitrices, très peu parient sur les cellules pluripotentes.

Une autre activité commerciale est la collecte et le stockage de sang du cordon ombilical. Contrairement aux banques publiques, le sang est stocké au bénéfice exclusif du donneur et de ses proches.

([9], [94], [117])
Références
Les références sont classées par date de mise en ligne. Les URL ont été vérifiées en juin 2014. En cas de problème, il est généralement possible de récupérer le document avec un moteur de recherche en faisant une requête avec le titre.

2008-05-22 [12] Dois-je conserver le sang de cordon ombilical de mon bébé au cas où il / elle en a besoin plus tard dans sa vie ? EuroStemCell. http://www.eurostemcell.org/fr/faq/dois-je-conserver-le-sang-de-cordon-ombilical-de-mon-b%C3%A9b%C3%A9b%C3%A9b-9-au-cas-o%C3%B9-elle-en-besoin-plus-tard-

Dossier pour l’IHEST

Cellules souches et médecine régénérative

2012-04-03 [26] L’œil et les cellules souches : vers le traitement de la cécité. EuroStemCell. http://www.eurostemcell.org/fr/factsheet/%C5%93il-et-les-cellules-souches%C2%A0-vers-le-traitement-de-la-c%C3%A9cit%C3%A9

Cellules souches et médecine régénérative

